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Abstract
The antiferroelectric (AFE) phase transition of Rb3DxH1−x(SO4)2 was
studied using x-ray diffraction, optical birefringence, and nuclear magnetic
resonance. The orientation dependence of the resonance lines deduced from
the quadrupole-perturbed 87Rb nuclear magnetic resonance of Rb3D(SO4)2

single crystals indicates slight deviations from the monoclinic symmetry in
the paraelectric and the AFE phases. The dynamical critical exponents as
deduced from measurements of the spin–lattice relaxation times depend on
the deuteron concentration. Additionally, we have carried out x-ray single-
crystal diffraction as well as optical birefringence measurements and find clear
evidence for a structural phase transition in Rb3D(SO4)2. The low-temperature
space group of this compound is A2.

1. Introduction

The structure and dynamics of hydrogen bonds constitute an active field of research, because
H bonds play important roles, e.g., in the properties of bio-polymers, in our understanding of
aqueous systems, and in the physics of crystalline and amorphous ice phases [1]6. Furthermore,
in many cases isotope effects are observed. A well known example is furnished by the melting
point of D2O ice which is about 3.8 K higher than that of H2O ice. At elevated pressures
much more pronounced isotope effects have been reported: at 65 GPa, the cubic phase of

5 Present address: Robert Bosch GmbH, 71701 Schwieberdingen, Germany.
6 For recent surveys, see [2].
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deuterated ice VII transforms to tetragonal ice VIII at 120 K. At the same pressure, protonated
ice VII exhibits no phase transition down to the lowest temperatures [3]. In D2O the transition
from phase VII to VIII is accompanied by an antiferroelectric (AFE) ordering of the three-
dimensionally hypernetted hydrogen-bond network.

Isotope effects are also known for other crystals which exhibit ferroelectrically or
antiferroelectrically ordered low-temperature phases [4]7. The most prominent group of
crystals in this context is the KH2PO4 (KDP) family for which the three-dimensional (3D) H-
bond network shows only an incomplete isotope effect [5]. This means that the fully protonated
samples still exhibit finite ordering temperatures. Similar observations have been made in
2D [6] and 1D [7,8] networks and even for so-called zero-dimensional ‘networks’. An example
for the latter are crystals from the M3H(XO4)2 family with M = {K,Rb,NH4}, H = {H,D},
and X = {S,Se}. Here the hydrogen bonds connect two sulphate or selenate tetrahedra to the
ionic group [(XO4)·H· · ·(XO4)]3−. Remarkably, for several tri-alkali–hydrogen disulphates
or diselenates the isotope effect is complete, i.e., the deuterated samples order electrically
while no ordering occurs in the protonated samples. Such a behaviour is exhibited, e.g.,
for K3DxH1−x(SO4)2, Rb3DxH1−x(SO4)2, and Rb3DxH1−x(SeO4)2, with x designating the
deuteron concentration. Also some organic crystals with zero-dimensional ‘networks’ show
no proton ordering at low temperatures [9].

Many efforts in this field are directed towards achieving an understanding of the driving
forces which lead to the establishment or the suppression of low-temperature electrically
ordered phases. Basically there are two major scenarios that are discussed as possible
origins of the isotope effect. The first emphasizes the importance of tunnelling effects in
protonated crystals leading to a partial or even full suppression of the electrical order seen in
the corresponding deuterated compounds. Thus, the disordered paraelectric phase is stabilized
quantum mechanically, justifying calling these materials quantum paraelectrics. The second
view is based on the observation that for each family of isostructural hydrogen-bonded crystals
there is an approximate linear relation between the O·H· · ·O bond length, ROO(TC), and the
phase transition temperature, TC [10]. This phenomenon has been called the geometric isotope
effect in order to emphasize that quantum-mechanical effects (other than those determining
the length of the hydrogen bond itself) are not thought to be the most important ones. For the
explanation of the Ubbelohde effect (which addresses the dependence of ROO on the degree
of deuteration), numerous models have been proposed [11]. A critical test of the notion
of a geometric isotope effect should be possible when varying ROO other than by means of
temperature—e.g., by the application of external pressure. In this respect it is interesting to
note that pressure-dependent neutron scattering investigations revealed that the phase transition
temperature of KDP crystals depends not only on ROO (as adjusted by means of pressure) but
also on the degree of deuteration [12].

For a theoretical description of the hydrogen isotope effect, one may distinguish those
approaches which start from a direct proton–proton coupling from those which explicitly take
the proton–environment interactions into account. Direct proton–proton couplings are involved
in the classical ‘ice rules’ which have been quite successful in describing many aspects of the
hydrogen dynamics also, e.g., in the 3D networks [5]. However, the large separation of
hydrogen bridges in ionic systems like M3H(XO4)2 shows that these rules might not always
be applicable.

Frequently the proton–proton interactions are mapped onto the transverse Ising model
defined by the Hamiltonian H = −∑

i,j Jij S
z
i S

z
j − ∑

i �iS
x
i [5, 13]. Here �i denotes the

7 While here we focus on hydrogen-bonded crystals, it should be noted that SrTiO3 shows an oxygen (18O versus
16O) isotope effect; see [4].
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tunnelling frequency, Jij the interaction strengths, andSz andSx are longitudinal and transverse
components of the pseudo-spins. An early extension of this widely applied approach involved
a coupling of the pseudo-spins to optical lattice vibrations. Upon approaching the phase
transition the latter were found to soften and to eventually freeze out at TC [14]. More recent
and complete treatments of the coupling between the proton and its environment involved
not only the lattice, but also the bilinear coupling to the tunnelling modes, as well as to
the polarizability of the tetrahedral ions [15, 16]. This way, there is a potential coupling of
displacive degrees of freedom (e.g., the distortions of the tetrahedral ions) to the interacting
pseudo-spins for which order/disorder aspects appear more prominent [17]. The more elaborate
theories capture several features of the symmetry breaking which takes place in the electrically
ordered low-temperature phases.

We should also mention that in the framework of another theoretical approach, based
on a coupling between tunnelling and phonon modes, it was suggested that the symmetry of
the H bond is broken already in the paraelectric phase [18]. This effect was called ‘proton
self-trapping’ and several subsequent experimental studies were interpreted as confirming the
existence of self-trapped proton states [19].

For tests of the applicability of the idea of ‘proton self-trapping’, systems such as
Rb3DxH1−x(SO4)2 appear appealing for several reasons:

(i) This family of crystals exhibits a complete isotope effect. While for x = 1 an AFE
transition takes place at TN = 82 K, crystals with x < 0.22 do not order at low
temperatures.

(ii) The absence of direct lattice-mediated proton–proton couplings helps to avoid the
difficulties imposed by concepts based on the ice rules.

(iii) The alkali disulphates and diselenates have been well characterized by a number of
experimental techniques such as those based on x-ray diffraction [20–26], neutron
scattering [27–31], calorimetry [32–34], dielectric properties [35–37], Raman spectra [38,
39], and nuclear magnetic resonance (NMR) [40–47].

Despite the large number of investigations dealing with theM3H(XO4)2 family, a number
of important issues are still unresolved. Several suggestions have been made regarding the
structure of the paraelectric phase. On the basis of x-ray [20,21] and powder neutron [29,31]
diffraction studies, the monoclinic A2/a structure has been favoured. Recent neutron
experiments, on the other hand, revealed the occurrence of reflections which are not allowed
for this crystal system [30]. Additionally, on the basis of the NMR observation of three
magnetically inequivalent alkali sites, it has been argued that the hydrogen bond is non-
centrosymmetric in the paraelectric phase [41]. Later it was pointed out that this finding
is fully compatible with an A2/a structure [42]. Furthermore, despite some effort [20,24,26],
the exact symmetry of the AFE low-temperature phase is not agreed upon.

In this paper, in addition to studying lattice symmetries and order parameters using
x-ray diffraction and 87Rb NMR techniques, spin–lattice relaxation experiments were
employed to investigate the dynamical critical behaviour of Rb3DxH1−x(SO4)2 crystals
with nominal deuteron concentrations x = 1, 0.65, and 0.5. Furthermore, optical
birefringence measurements were carried out in order to characterize the AFE phase transition
in Rb3D(SO4)2.

2. Experimental details

Single crystals of Rb3DxH1−x(SO4)2 were synthesized from aqueous solutions as described
previously [45]. Small crystals of Rb3D(SO4)2 and Rb3H(SO4)2 suitable for x-ray analysis
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were isolated and checked by taking x-ray Laue photographs. Fragments of good quality
single crystals of the approximate dimensions 0.5 mm ×0.5 mm ×0.5 mm were studied using
multilayer-monochromatized8 Cu Kα radiation from a Schneider rotating anode and a four-
circle Huber diffractometer with a 250 mm χ -circle. The diffractometer was controlled by a
personal computer with the STOE STADI4 program system9 and equipped with a two-stage
closed-cycle helium cooling device (CTI-Cryogenics). The study was performed between
10 K and room temperature. The temperature was controlled to within 0.1 K. The refinement
of the cell parameters was carried out by measuring about 60 reflections with high 2ϑ values
and their Friedel pairs at both sides of the primary beam. An ω-scan was carried out at +2ϑ
and −2ϑ and ω. The centre of gravity was determined for both scans and the observed 2ϑ was
calculated from the difference of the two ω-centres. These results will be free of zero-point
errors, absorption effects, and systematic errors resulting from a crystal mis-centring.

The NMR measurements were carried out using the quadrupole-perturbed central
transition (+1/2 ↔ −1/2) of the 87Rb (I = 3/2) nucleus. All spectra were recorded at a
Larmor frequency of νL = 85.7 MHz. The frequency offsets, ν − νL, are given with respect
to a solution of RbCl in D2O. Absorption spectra were obtained with whole-echo acquisition
using a 90◦–tHE–180◦ sequence with tHE = 200 µs. Due to the relatively long transverse
dephasing times of typically 2 ms, this does not lead to a significant loss of magnetization. In
order to perform the angle-resolved measurements near 78 K, the temperature was kept stable
to within ±0.05 K for several days [45,53]. 87Rb spin–lattice relaxation times were measured
at 85.7 MHz (for x = 0.5 and 1) and 107.0 MHz (x = 0.65) using powdered samples.

In order to determine the optical birefringence, �n = nb − na , a (001) plate of
Rb3D(SO4)2 was mounted between two polarizers within the sample compartment of an
optical two-beam spectrometer [48]. The angle between the principal axes and the birefringent
plate was 45◦. In this configuration the transmitted intensity, I , is connected to �n by
I⊥ ∝ I0 sin2(π �n d/λ) or by I‖ ∝ I0 cos2(π �n d/λ) with d denoting the thickness of
the sample. I⊥ and I‖ refer to the intensities with crossed and with parallel orientations of the
polarizers, respectively. The relative intensity was recorded as a function of the wavelength
λ in the range 230 nm < λ < 2600 nm. The birefringence �n was determined at those
wavelengths which exhibit maxima or minima of I⊥ and of I‖.

3. X-ray diffraction

The temperature dependence of the lattice parameters is shown in figure 1. If the differences
between the volumes and the two lattice parameters c are plotted as a function of temperature, a
discontinuity is observed between 80 and 85 K (figure 2). This indicates that a phase transition
occurs in this temperature range10.

The x-ray diffraction pattern at room temperature is consistent with the space group A2/a
which was also found for the isostructural compounds Rb3D(SeO4)2 [30], Rb3H(SeO4)2 [49],
K3D(SO4)2 [21], K3H(SO4)2 [22], and K3H(SeO4)2 [50], whereas from neutron diffraction
Gustafsson et al [30] find A2 for Rb3H(SeO4)2 at room temperature.

Below the phase transition temperature of Rb3D(SO4)2, superstructure reflections appear
in the diffraction pattern which can be described by two wavevectors q1 = (0, 1/2, 1/2)
and q2 = (0, 1/2,−1/2). Therefore, the low-temperature structure of Rb3D(SO4)2 must be
described in a cell (a, 2b, 2c). For the indexing based on this cell the temperature variation
of the reflection (−1, 3, 5) is shown in figure 3. Rb3D(SO4)2 exhibits the appearance of the

8 A monochromator from OSMIC Incorporated, Troy, MI, USA was employed.
9 From the 1995 STADI4 Software Manual, Stoe & Cie, Darmstadt, Germany.
10 It should be noted that, from calorimetry, TN for Rb3D(SO4)2 was reported to be 78.5 K [34], while our crystals
order at 82 K probably due to slight differences in the degree of deuteration.



XRD, optical birefringence, and 87Rb NMR spectroscopy of Rb3DxH1−x (SO4)2 899

Figure 1. The lattice parameters as a function of temperature for Rb3D(SO4)2 (filled circles) and
Rb3H(SO4)2 (open squares) from this work. The error bars for the lattice constants are smaller
than the size of the symbols. The crosses mark data for Rb3H(SO4)2 from [27].

Figure 2. Differences between (a) the lattice parameters c with �c ≡ c(Rb3H(SO4)2) −
c(Rb3D(SO4)2) and (b) the cell volumes with �V = V (Rb3H(SO4)2) − V (Rb3D(SO4)2) as a
function of temperature. For both quantities, discontinuities are clearly seen near TN .

superstructure reflection whereas Rb3H(SO4)2 does not show any phase transition. Thus,
Rb3DxH1−x(SO4)2 exhibits the same behaviour as it is known for K3DxH1−x(SO4)2 [24, 26].
The data on Rb3D(SO4)2 have been taken upon cooling and heating. There is no thermal
hysteresis which is indicative of a second-order phase transition.

For K3D(SO4)2, Noda et al [24, 26] find that a cell doubling occurs along the b- and c-
directions and that systematic absences of anA lattice are observed when the indexing is based
on a (a, 2b, 2c) superstructure. Since there are weak reflections at h = 2n + 1 the structure
does not involve an a-glide plane. The low-temperature phase for K3D(SO4)2 must therefore
be taken as A2. Other possibilities, A2/m and Am, are ruled out because of the continuity
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Figure 3. Intensity variation of the reflection (1̄35) from x-ray diffraction as a function of
temperature for Rb3H(SO4)2 (squares) and for Rb3D(SO4)2 (triangles) as measured upon cooling
and heating. The error bars are smaller than the size of the symbols.

of the symmetry elements from the A2/a space group at high temperatures. In the A2 phase,
there are eight non-equivalent SO2−

4 molecules and, even though the space group isA2, there is
a pseudo-symmetry of an a-glide plane and the structure is very close toA2/a. Our diffraction
pattern shows reflections only for h + k = 2n but there are also reflections for h = 2n + 1.
The condition for an A lattice is fulfilled but not the one for the a-glide plane. Therefore, we
conclude that the space group of Rb3D(SO4)2 at low temperatures is A2.

4. NMR spectroscopy

4.1. Central-transition spectra of Rb3D(SO4)2

Previously, rotation patterns of the deuterium resonance frequencies of Rb3D(SO4)2 were
reported above and below TN [44]. For 87Rb, corresponding information is so far only available
at room temperature [42]. At 300 K the number of lines and their angular dependence were
found to be consistent with the monoclinic space group A2/a. Recent neutron diffraction
experiments carried out in the paraelectric phase of Rb3H(SeO4)2 indicated, however, that
upon lowering the temperature, reflections develop which should be extinct in this crystal
system [30]. This calls for more extensive NMR studies, since this method is highly sensitive
to changes in the local symmetry.

Using 87Rb NMR we have recorded the angular dependence of the resonance frequencies
of the central (+1/2 ↔ −1/2) lines in the paraelectric phase of Rb3D(SO4)2 at T = 100 K.
To this end we have rotated a Rb3D(SO4)2 single crystal about three mutually perpendicular
axes α denoted as u, v, and w. The resulting rotation patterns, i.e., the line shifts, (ν − νL)α ,
versus the rotation angles, θα , are shown in figure 4. It is pointed out that the rotation axis
u is collinear with the monoclinic c∗-axis (to within <2◦). In figure 4(a) we have marked
the orientations at which the monoclinic a- and b-axes are parallel to the external magnetic
field. The starting position corresponding to the rotation axis v is also shown. In figure 4(a)
the resonance frequency of one site (the Rb(1) site) is only weakly modulated, indicating
that the largest principal axis of the associated electric field gradient (EFG) tensor is almost
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Figure 4. Orientation-dependent positions of the resonance lines of the central 87Rb transition.
The data were obtained by rotating the crystal about three mutually perpendicular axes through
the angles θα . The crosses correspond to the Rb(1) site, the other symbols to the Rb(2) sites. In
frame (a) we have marked the angles at which the crystallographic axes a and b are aligned parallel
to the static external magnetic field. Other special orientations are also labelled. The curves are fits
using equation (1) and the resulting tensor parameters are given in table 1. The data were obtained
at 100 K, i.e., above the AFE phase transition temperature.

parallel to u (or c∗). With respect to the angle for which b ‖ B0, the θu′ -dependences of the
other two lines exhibit an approximate mirror symmetry. Thus these resonances refer to the
crystallographically equivalent but magnetically inequivalent Rb(2′) and Rb(2′′) sites. The
assignment of lines for the other rotation axes follows directly from the fact that in specific
corresponding orientations the line splittings are identical; cf. figure 4.

More quantitatively, the full orientation dependence for each site was described by a set
of 15 coefficients, di,α (i.e., five for each of the three rotation axes). For each rotation axis α,
the expression is [51]

(ν − νL)α = −ν2
Q[d0,α + d1,α sin(2θα) + d2,α cos(2θα)

+ d3,α sin(4θα) + d4,α cos(4θα)]/(96νLV
2
ZZ). (1)

Here νQ = eQVZZ/2h is the quadrupole coupling constant and VZZ = eq the largest
eigenvalue of the EFG in the principal axis system (PAS) of the tensor. For convenience,
below, we will give not only νQ but also the tensor components Vij in units of frequency.
Fits using equation (1) are shown as solid curves in figure 4. From the five parameters thus
obtained for each rotation axis, only d3,α and d4,α are used (since d0,α is independent of the
orientation, and d1,α as well as d2,α additionally depend on first-order effects, e.g., the chemical
shift anisotropy [52]). From these six coefficients (i.e., two for each rotation axis) one can
determine the five EFG parameters for each site, i.e., the three principal values and the polar
and the azimuthal angles specifying the tensor orientation in a given reference frame.
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Table 1. Tensor components Vij (in MHz) at the 87Rb site of Rb3D(SO4)2 in the orthogonal
pseudo-monoclinic a, b, c∗ system based on the analysis of the 100 K data shown in figure 4. The
largest principal value in the PAS, VZZ , and the asymmetry parameter, η, are also given. All tensor
components shown (as well as VXX and VYY ) are accurate to within about 30 kHz. Consequently
the uncertainty in the asymmetry parameter, η ≡ (VXX − VYY )/VZZ , is 0.02 or smaller.

Vaa Vbb Vc∗c∗ Vab Vac∗ Vbc∗ VZZ η

Rb(1) −2.92 −2.73 5.65 −0.03 −0.03 −0.03 5.65 0.04
Rb(2′) −1.55 −0.82 2.38 −1.51 1.02 −2.02 3.84 0.38
Rb(2′′) −1.44 −0.94 2.39 1.43 1.40 1.81 3.83 0.46

In table 1 we summarize the six components of the symmetric and traceless EFG tensor
in the a, b, c∗ coordinate system. Since the off-diagonal elements for the Rb(1) tensor are
very small, one recognizes that the principal axes are essentially oriented along the monoclinic
axes a, b, and c∗. Furthermore, the asymmetry parameter, η ≡ |Vaa − Vbb|/Vc∗c∗ , is almost
zero for the Rb(1) site. In particular, these findings are compatible with Rb(1) being located
on a symmetric site and a twofold rotation axis. Both features are expected for A2/a. Within
this space group the asymmetric Rb(2) units have to obey a (glide) reflection symmetry. This
means that all the tensor components in the PAS and consequently VZZ and η should be the
same. While in table 1 it is seen that the VZZ-values of the Rb(2) sites are identical within
experimental error, their asymmetries differ significantly; in particular, the Vac∗ -components
deviate by about 400 kHz from one another. This finding is incompatible with a monoclinic
A2/a system and indicates a lower symmetry which we will call pseudo-monoclinic11. This
is because the inversion symmetry which results from the combination of (glide) reflection
and the perpendicular twofold rotation axis is preserved within experimental error (otherwise
more than three lines should appear in the NMR spectra). Furthermore, the deviations from
the monoclinic symmetry are so small that they could not be detected from NMR powder
spectra [45], and also could not be detected from the x-ray data reported above, and not even
from the 87Rb single-crystal rotation patterns of Rb3D(SO4)2 recorded at 300 K [45]. This
latter finding suggests that the deviations from monoclinic symmetry increase with decreasing
temperature already in the paraelectric phase, and this trend is thus compatible with results
from neutron diffraction on Rb3H(SeO4)2 [30].

On lowering the temperature, the AFE transition in Rb3D(SO4)2 takes place at TN = 82 K.
This phase transition leads to a quadrupling of the number of NMR frequencies, i.e., twelve
resonance lines are generally observed [45]. In order to check the local symmetries we have
recorded series of orientation-dependent measurements slightly below TN . Rotation patterns
involving 12 second-order perturbed resonance lines may be anticipated to be quite complex.
Therefore, in order to facilitate the assignments of resonance lines and to be able to focus
on the deviations from the high-temperature (T = 100 K) symmetry, we have used the same
specimen as for the measurements at 100 K, reported above. In particular, this implies that the
same set of rotation axes u, v, andw was employed for both experiments. In figure 5 we present
the angular dependence of the frequency shifts obtained at a temperature of 78.1 K. Overall
there are a number of similarities to the rotation patterns recorded at 100 K. At least partly
due to the fact that some of the lines exhibit very similar orientational dependences, the proper
assignment of the resonances is now considerably more tedious than before. From several
independent procedures [53] we were able to determine the set of EFG tensor parameters, and
in table 2 we reproduce VZZ and η for each magnetically inequivalent site. The four lines
originating from, e.g., Rb(1) are called Rb(1, n) with n = 1, 2, 3, 4. Let us draw attention

11 This means that the metric is monoclinic and would leave P 1̄ as a possible space group.
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Figure 5. As figure 4, but recorded below the AFE phase transition temperature. The anisotropy
and asymmetry parameters corresponding to the solid curves are given in table 2.

to several observations. With the index s = 2′, 2′′ labelling the original asymmetric sites,
the averaged principal axis values,

∑
n νQ[Rb(s, n)]/4, within experimental error, are equal

to their values, νQ[Rb(s)], at 100 K. Moreover, as table 2 shows the coefficients for Rb(2′, n)
equal those for Rb(2′′, n) for each n within experimental error12. Then table 2 shows that the
tensor parameters for Rb(1, 1) and Rb(1, 3) are identical to those of Rb(1, 2) and Rb(1, 4),
respectively.

However, from inspecting the tensor orientations it becomes clear that neither (glide)
reflection planes nor twofold axes can unambiguously be defined at low temperatures. A more
detailed analysis of the data shown in figure 5 reveals [53] that the tensors of the asymmetric
sites (Rb(2′, n) and Rb(2′′, n) for eachn) are related approximately (only!) by a twofold rotation

12 It should be noted, however, that the quadrupole couplings for Rb(2′, n) appear to be systematically larger (albeit
slightly) than those for Rb(2′′, n).
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Figure 6. The upper trace reflects the 87Rb central-transition powder spectrum of Rb3D(SO4)2.
The lower trace is computed using the tensor parameters given in table 2. Excellent agreement is
found.

Table 2. Quadrupole couplings in MHz (upper table) and asymmetry parameters (lower table)
corresponding to the 12 lines shown in figure 5. It can be seen that there are always two sites for
which the coefficients agree within experimental error.

VZZ n = 1 n = 2 n = 3 n = 4

Rb(1, n) 5.83 5.83 5.70 5.72
Rb(2′, n) 4.20 3.93 3.83 3.56
Rb(2′′, n) 4.17 3.91 3.81 3.55

η

Rb(1, n) 0.21 0.20 0.27 0.27
Rb(2′, n) 0.39 0.35 0.64 0.48
Rb(2′′, n) 0.37 0.38 0.65 0.49

around the pseudo-monoclinic b-axis. Furthermore, the Rb(1, 1) and Rb(1, 2) (or Rb(1, 3) and
Rb(1, 4)) tensors, corresponding to the symmetric units, exhibit a reflection symmetry with
the mirror plane defined by the a–c plane [53]. This implies that twelve crystallographically
inequivalent sites should be present, as experimentally observed.

We have also made measurements on a finely powdered sample of Rb3D(SO4)2, and in
figure 6 we show a spectrum recorded at a temperature of 78 K (upper curve). The lower
curve in figure 6 demonstrates that the overall shape can be reproduced by a superposition of
six equally weighted powder spectra with the parameters given in table 2. The calculations
are described in more detail elsewhere [45, 53]. It is clear that from the powder spectra alone
the EFG parameters cannot be extracted. However, the good agreement between the powder
pattern and the simulations confirms the results of the (by no means trivial) analysis of the
complex rotation pattern recorded for the single crystal.

4.2. Spin–lattice relaxation

The dynamical properties of Rb3DxH1−x(SO4)2 can be studied using spin–lattice relaxation
measurements. These essentially allow one to monitor the fluctuations of the EFG at the probe
sites on the scale set by the Larmor frequency [54]. Previously, deuteron and rubidium NMR
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for fully deuterated samples was used to study the soft mode which drives the AFE phase
transition. Since the quadrupolar coupling of the deuterons (<0.1 MHz [44]) is much smaller
than that of 87Rb (several MHz [45, 46]), spin–lattice relaxation is very inefficient for the
former nucleus. Near the AFE transition of Rb3D(SO4)2 a shallow deuteron relaxation time
minimum has been reported, but there 2T1 was always longer than 1000 s [44,53]. In the same
temperature range and at comparable Larmor frequencies, 87Rb relaxation times, 87T1, down to
about 30 ms were found [42]. While this renders 87T1-measurements relatively fast, the analysis
of the data is somewhat complicated by the facts that only selective excitation (of the central
transition) is possible [55] and that, in our case, there is a multitude of sites and therefore also of
quadrupolar coupling parameters. The resulting multi-exponential longitudinal magnetization
recovery may be hard to resolve spectrally below TN . In this situation it may not even be an
advantage to use single crystals. Above TN , at which the spectra are far less crowded, spectral
separation in single crystals is more easily possible and has been accomplished [42]. In the
case of deuteron NMR, on the other hand, the spectra seem to be less crowded [44], thus
facilitating the study of single crystals also below TN—however, at the expense of very long
measuring times.

In the following we will mainly focus on 87Rb spin–lattice relaxation measurements
of powder samples. It should be noted that in the presence of at least three magnetically
inequivalent Rb sites, an at least sixfold exponential magnetization recovery is expected
in a single crystal. Since the spin–lattice relaxation times are also angle dependent, the
determination of the corresponding rates from powder data is impossible. However, the 1/e
decay times can be taken as a measure for T1. In figure 7 we present corresponding data
for Rb3D(SO4)2, Rb3D0.65H0.35(SO4)2, and Rb3D0.5H0.5(SO4)2 for a range of temperatures.
The phase transition temperatures are signalled by pronounced T1-minima. These show up
at 82, 48, and 21 K for the crystals with deuterium concentrations x = 1, 0.65, and 0.5,
respectively. In addition to the critical contribution, T1,crit , associated with the AFE transitions,
relaxation via lattice vibrations and possibly other effects, T1,latt , also plays a (minor) role.
The latter may be estimated from the data for Rb3H(SO4)2 which show no phase transition
down to the lowest temperatures. The critical contributions, T1,crit = 1/(1/T1 − 1/T1,latt),
thus obtained are plotted double logarithmically in figures 8(a)–(c). For all concentrations
a power-law behaviour, T1,crit ∝ |T − TN |λ, is recognized to hold over large temperature
ranges below as well as above TN . The critical exponents, λ, are the same on both sides
of TN , but they depend considerably on the deuteron concentration. For x = 1 we find
λ = 0.67 ± 0.07 (which within experimental error reproduces the results previously obtained
in a somewhat smaller temperature range [42]). For x = 0.5 and 0.65 the exponents turn out
to be λ = 1.15 ± 0.15 and 0.87 ± 0.09, respectively. The given error estimates do not reflect
the relatively minor scatter in the experimental data, but predominantly the uncertainty in the
determination of TN .

The multi-exponentiality of the longitudinal 87Rb magnetization recovery, M(t),
could also be described well using the phenomenological Kohlrausch function, M(t) ∝
exp[−(t/T1)

1−ν]. Here T1 denotes the 1/e decay time of the magnetization recovery and
the exponent ν is a measure for the deviations from exponential spin–lattice relaxation. In
figures 8(d)–(f) we present ν(T ) for all concentrations. We find ν ≈ 0 in the regime in which
T1 is dominated by lattice vibrations, i.e., ifTN is not closely approached. Indeed a site-resolved
measurement far above TN (not shown) revealed that for each site the magnetization recovery
is single exponential (ν = 0 ± 0.03). Very close to TN , considerable stretching is observed for
all samples. It is remarkable that the deviations from exponentiality are more pronounced for
the partially deuterated samples. This finding can tentatively be ascribed to the disorder arising
from the random proton/deuteron replacement. In any case, the longitudinal 87Rb relaxation
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Figure 7. The temperature dependence of the 87Rb spin–lattice relaxation time of
Rb3DxH1−x (SO4)2, for several deuteron concentrations x. The concentration-dependent AFE
transition temperatures can be inferred from the sharp minima. The sample with x = 0 does not
exhibit electrical order down to the lowest temperatures. The open circles are taken from [43].
The solid curve represents a model which takes into account the spin–lattice relaxation via lattice
vibrations [54].

Figure 8. (a)–(c) Double-logarithmic plots of the critical contributions to the 87Rb spin–
lattice relaxation times for various deuteron concentrations. The slopes of the curves reflect the
corresponding critical exponents λ. (d)–(f) Stretching exponents ν. For x = 1 one finds that ν > 0
only close to TN . It should be noted that the Larmor frequencies are 85.7 MHz for x = 0.5 and 1
and 107.0 MHz for x = 0.65.

due to EFG fluctuations should at least be double exponential, M(t) ∝ e−2W1t + e−2W2t , with
the rates [56, 57]

Wk = (C(ζ) �Vk)
2J (kνL) (2)
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Figure 9. (a) Temperature dependences of the relaxation rates 2/W1 and 2/W2 from the bimodal
87Rb magnetization recovery of Rb3D(SO4)2 at the Rb(2) site near TN . The average of these rates
(corresponding to T1) is given by the crosses. The arrows highlight that the temperature positions
of the minima are slightly different. (b) The ratio of the rates W1/W2 increases upon approaching
the AFE phase transition temperature from above.

for k = 1, 2 and C(ζ) = eQ(αζ)/[2I (2I − 1)h̄]. Here ζ = 2 and 87 stand for 2H and 87Rb,
respectively. Furthermore, Q is the nuclear quadrupole moment, and �V 2

1 = 4(�V 2
xz +�V 2

yz)

and �V 2
2 = 1

4 (�Vxx − �Vyy)
2 + �V 2

xy denote different linear combinations of (squares
of) fluctuation amplitudes, �Vij , of the various EFG tensor elements [56, 57]. Previously
we reported for Rb3D(SO4)2 that the ratio W1/W2 differs significantly from unity in the
close vicinity of TN , only [42]. This is in accord with the temperature dependence of ν;
cf. figure 8(d). The above expression for Wk suggests that two limiting scenarios could be
invoked to rationalize these observations. If J (νL) equals J (2νL), then these observations are
to be related to a relative change of fluctuation amplitudes and hence a change in the orientation
dependence of the order parameter fluctuations. Alternatively, a change in theW1/W2 ratio may
arise solely if the spectral density becomes frequency dependent, J (νL) �= J (2νL)—in other
words, if the rate of EFG fluctuations approaches the Larmor frequency. From measurements
carried at two different Larmor frequencies on powdered Rb3D(SO4)2 it was concluded that
J (νL) ≈ J (2νL) holds over large ranges of temperature on both sides of TN [42].

Spectrally resolvedT1-measurements are required in order to check with a better sensitivity
whether a frequency dependence of the spectral density can be ruled out also very near TN or
rather has to be taken into account as a possible source of the considerable non-exponentiality.
To this end, we have studied the relaxation at the Rb(2) site of a Rb3D(SO4)2 single crystal.
The results are shown in figure 9. It is clearly seen that the temperature positions in the maxima
of W1 (∝J (νL)) and W2 (∝J (2νL)) differ by up to about 0.5 K, as evidenced also by similar
results for various other orientations [53]. In view of this frequency dependence of the spectral
density it becomes clear that near TN the soft-mode frequency cannot be too far off from νL.
This would also rationalize the saturation of T1 seen in figure 8 for |T − TN | < 1 K.

5. Optical birefringence

The inset of figure 10 shows the dispersion of the birefringence �n of Rb3D(SO4)2.
Characteristic features are the quadratic dependence of �n on the photon energy for a wide
range of the optical spectrum and its steep decrease at small photon energies. Both features



908 A Titze et al

Figure 10. The optical birefringence �n of Rb3D(SO4)2 as measured at a phonon energy
E = 2.8 eV as a function of temperature. The data have been obtained on cooling and on
heating. �n(T ) varies linearly above TN (solid line). In the inset the optical birefringence at room
temperature is plotted versus the square of the photon energy E. Circles and diamonds represent
data taken for two different samples.

are signatures of the presence of hydrogen bonds [48]. Describing the infrared contribution
by a Sellmeier oscillator we find a resonance energy of E0 = 0.304 eV which corresponds
to a wavenumber of 2450 cm−1. This is a reasonable value for the vibrational band of D–O
bonds. The electronic contribution to �n, which is illustrated by the solid line in the inset of
figure 10, is proportional to

∑
i (cos2 γ i

b − cos2 γ i
a ). Here γb (γa) denotes the angle enclosed

by the D–O bond i and the crystallographic axis b (a). We have evaluated the sum in order to
determine the sign of �n.

In order to elucidate the structural origin of the optical changes with temperature we have
carried out measurements for the photon energies 0.48 eV < E < 1.55 eV. In this range,
birefringence is produced by a superposition of vibronic and electronic contributions. They
have been obtained by exploiting their difference in dispersion apparent in the inset of figure 10.
Figure 10 shows the dependence of the electronic contribution to the optical birefringence of
Rb3D(SO4)2 on temperature. Above TN we find that �n increases linearly with decreasing
temperatures. The AFE phase transition is clearly marked by the deviations from this simple
behaviour and by a decrease in �n. Furthermore, the birefringence was determined at room
temperature also after the sample was rotated by small anglesχ (<15◦) and at low temperatures
for two different orientations of the sample. Due to the monoclinic symmetry, large values of
∂ �n/∂χ have been observed for a rotation about the crystallographic axis b. Comparing the
data observed at room temperature and at low temperatures, we realize that the linear increase
of birefringence with decreasing temperature (see figure 10) is consistent with a rotation of
the optical indicatrix which is characteristic of a simple tilting mode of the O–D–O bonds. To
describe the changes below TN , deformations of the optical indicatrix also have to be taken into
account—which indicates a more complex structural origin than above TN . Over the whole
range of temperatures we find no difference in thermal behaviour between the two different
contributions to the birefringence.
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6. Discussion

Let us first discuss the structural properties of Rb3DxH1−x(SO4)2. Far above TN , e.g., at room
temperature, the results from diffraction [27] as well as from NMR [42] studies are compatible
with the monoclinic space group A2/a (Z = 4). In particular, from our previous single-
crystal NMR studies we concluded that at 300 K the (glide) reflection symmetry expected
for A2/a at the Rb(2′) and Rb(2′′) sites and the inversion symmetry at the hydrogen sites are
obeyed [42, 45]. The rotation patterns of Rb3D(SO4)2, recorded in the present work, reveal
that at 100 K the inversion symmetry at the centre of the H bond is still preserved. However,
the asymmetry parameters for the Rb(2′) and the Rb(2′′) sites differ beyond the estimated
experimental error (table 1). Let us note that this finding of a slight symmetry departure
solely relies on the evaluation of the EFG principal axis values and not on a considerably more
uncertain determination of the orientation of the tensors in the crystal axis system. These small
deviations from the monoclinic symmetry are not resolved in the present x-ray experiments,
in accord with previous studies of related substances [20–22, 24]. From neutron diffraction
studies on Rb3H(SeO4)2, Bragg reflections indexed as (h 0 l) with odd h and even l, which are
ruled out for A2/a, were reported to grow when cooling from 300 to 100 K [30]. From the
latter study it was concluded that the symmetry departure from A2/a can almost exclusively
be ascribed to the H-bond system.

Observations of departures from the symmetry of this space group can also be made in
the temperature range T < TN . From our x-ray investigation of Rb3D(SO4)2 we have found
the space group A2, previously reported for the AFE phase of K3D(SO4)2 [26], along with
a quadrupling of the unit cell. This enlargement of the unit cell is nicely reflected by the
quadrupling of the NMR lines; cf. figures 4 and 5. Compatibility with the A2 space group
implies that the tensors for the Rb(2′, n) sites equal those for the Rb(2′′, n) sites, which is only
roughly fulfilled.

On the basis of measurements of deuteron spin–lattice relaxation times, it has been argued
that the inversion symmetry of the H bond is broken already in the paraelectric phase [46].
Below, we will show that this interpretation is not unambiguous. Before doing so, let us first
recall the considerations on which the previously suggested interpretation [46] rests: if the
H bond is symmetric, then the EFG tensors which characterize the deuterons in the ‘left’-
hand and in the ‘right’-hand sides of the double-minimum potential can be transformed into
one another by an inversion operation. This operation, however, leaves the NMR frequency
invariant. Without a modulation of the EFG, the fluctuation amplitude (referred to as �V in
equation (2)) vanishes and consequently so also does the (intrabond) quadrupolar relaxation rate
1/T (Q)

1 . Experimentally [44, 53], near TN a very shallow minimum is found for the deuteron
T1. From this observation it was concluded that there is a finite intrabond contribution to �V
and thus a violation of the inversion symmetry of the H bond [44]. In the following we will
show that this observation can more naturally be rationalized by taking into account interbond
modulations of the EFG at the deuteron site.

To see this more clearly, in figure 11 we have plotted the temperature dependence of the
ratio13 [〈2T1〉(C(2))2]/[〈87T1〉(C(87))2] based on the data for Rb3D(SO4)2 given in figure 7 as
well as in [44] and [53]. Since the Larmor frequencies employed for the two nuclear probes
were compatible, via equation (2) written as 〈ζ T1〉−1 = (C(ζ) �V (ζ))2J (νL), the data shown in
figure 11 thus correspond to the ratio of the squared fluctuation amplitudes, (�V (87)/�V (2))2.
Close to TN this ratio is about 180 (cf. figure 11). As the following considerations show, this
order of magnitude appears very plausible.

13 The ratio of the squared quadrupole moments of 87Rb and 2H is given by [Q(87)/Q(2)]2 = (13/0.28)2 ≈ 2010;
see e.g., the EPR/ENDOR frequency table in the Bruker Almanac of 2000. Thus [C(2)/C(87)]2 = 9/2010.
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Figure 11. The ratio of squared fluctuation amplitudes as given by [〈2T1〉(C(2))2]/[〈87T1〉(C(87))2].
Close to TN this ratio is near the simple theoretical estimate given in the text.

If a symmetric H bond is assumed to exist just above TN , then the fluctuation amplitude,
�V (2), at the 2H site may be estimated from the simplified expression for the EFG written as
V (2) = ∑

i qi(ri−D)
−3. Here the sum runs over all adjacent nuclei. This expression for V (2)

implies that we drop any angular dependence of the EFG, but retain its distance dependence,
within a point charge approach. For small deuteron displacements, �rD−D, the fluctuation am-
plitude at the probe site is �V (2) = ∑

i qi[(ri−D +�rD−D)
−3 − (ri−D)

−3] = ∑
i qi[(ri−D)

−3 −
3�rD−D(ri−D)

−4 + · · · − (ri−D)
−3] ≈ −3

∑
i qi[�rD−D(ri−D)

−4]. This expression reduces to
�V (2) ≈ −3qD �rD−D(rD−D)

−4 if the position of only one adjacent deuteron is assumed to be
modulated. Similarly, for 87Rb, from V (87) = ∑

i qi(ri−Rb)
−3 one obtains that

�V (87) ≈ −3qD �rRb−D(rD−Rb)
−4 (3)

again if solely the distance fluctuation of the nearest deuteron, �rRb−D, needs to be taken into
account. Since any angular dependences have been dropped, the absolute variations of the inter-
nuclear vectors are considered the same for all nuclei; in particular, �rD−D = �rD−Rb. Taken
together, these yield the estimate (�V (87)/�V (2))2 = (rD−D/rD−Rb)

8 = (5.1 Å/3 Å)8 ≈ 70
for the interbond contribution to T1. In view of the simplifying assumptions made above, the
agreement of this ratio with the experimental one is very good. These considerations demon-
strate that intrabond contributions to the modulation of the EFG at the deuteron sites need not
be invoked in order to explain the experimental findings. In other words, in order to understand
the shallow minimum in the deuteron spin–lattice relaxation time it is not necessary to assume
that the inversion symmetry of the hydrogen bond is broken just above TN .

The argument just given furthermore shows that near TN it suffices to take into account
only the fluctuations of the hydrogen ions. This suggests that fluctuations of the other nuclei
may be relatively small on the scale of the Larmor frequency. Using equation (2) evaluated in
the fast-motion regime for the experimental maximum rate, W ∼ 50 s−1 (cf. figure 7), near
TN one obtains the timescale, τC, on which these fluctuations take place as τC ∼ 10−10 s.
This rough estimate is based on a fluctuation amplitude of �V ≈ 1 MHz which results from
comparing the variations of the EFGs when going from above and to below TN . The timescale
τC just given is close enough to the Larmor frequency to rationalize the frequency dependence
of T1 in the (very) close vicinity of the AFE phase transition (cf. figure 9). It should be noted
from Raman line-shape analyses of K3DxH1−x(SO4)2 at TN + 5 K that a timescale in the range
τC ≈ 1–7 × 10−13 s was deduced [38].

A remarkable result from our T1-measurements is that the dynamic critical exponent λ of
Rb3DxH1−x(SO4)2 exhibits a significant deuteron concentration dependence. The exponent
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λ = 0.67 ± 0.07 for x = 1 is similar in magnitude to that of the 3D Ising model14, the 3D
XY model15, or a generalization thereof16. If the soft mode, which drives the phase transition,
strongly couples to the dynamics of the hydrogen bonds, then the Ising model appears most
appropriate. It is unclear, however, in which way the strong deuteron dependence of λ can be
rationalized within this approach since neither the dimensionality nor the type of interaction
depends on x in an obvious fashion.

Within an extended transverse Ising model, an anharmonic coupling of the pseudo-spins
to the distortion of the adjacent tetrahedral molecular ions (here: SO2−

4 ) was taken into
account [15]. This coupling, which rescales the soft-mode frequency, is a function of the
bond length ROO [16] and thus indirectly depends on the deuteron concentration. This model
consequently implies that the displacive versus order/disorder character of the transition and
thus also the temperature dependence of the soft-mode frequency should show an isotope
effect. Therefore, this theoretical approach appears to be in qualitative agreement with the
experimental results shown in figure 8. For a more quantitative test the distortion of the sulphate
ions would have to be measured. A similar question was recently addressed by 31P chemical
shift measurements which allowed detection of the distortions of PO4 tetrahedra in KH2PO4-
type ferroelectrics [61]. Due to the somewhat unfavourable NMR properties of sulphur, the
prospects of resolving the issue for Rb3DxH1−x(SO4)2 are not really encouraging. However, the
investigation of related compounds such as Rb3DxH1−x(SeO4)2 certainly appears worthwhile.

7. Conclusions

We combined 87Rb NMR, optical birefringence, and x-ray diffraction in order to study single-
crystalline and powdered tri-rubidium–hydrogen disulphate. An important result of this study
is that the inversion centre of the hydrogen bond is conserved in the paraelectric phase. We
also pointed out that it is not necessary to invoke asymmetric H bonds in order to rationalize
the slight minimum seen in the deuteron spin–lattice relaxation times which was previously
interpreted in favour of proton self-trapping.

For the paraelectric as well as in the AFE phases of Rb3DxH1−x(SO4)2, the NMR rotation
patterns yield evidence for deviations from the monoclinic symmetry which are, however, not
borne out by the x-ray data. This suggests that these symmetry departures are associated with
an ordering in the hydrogen-bond system. Below TN a quadrupling of the unit cell is observed
by means of NMR as well as x-ray diffraction. From our x-ray investigations we conclude that
for T < TN the space group of Rb3D(SO4)2 is A2.

For the critical exponent λ which describes the temperature dependences of the soft-
mode frequency, we find a systematic increase for decreasing deuteron concentration. This
observation can be rationalized if the displacive versus order/disorder character of the AFE
phase transition shows an isotope effect.
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